

Table of Content

Ci idis	,
	erials

PLATES	2
FORGING	4
PIPES & TUBING	5
BAR & EXTRUSIONS	6

• Piping Materials

FITTINGS	7
FLANGES	8
FASTENERS	

• Electrical Materials

ELECTRICAL EQUIPMENT __10

• Equipment

WATERJET EQUIPMENT	1
WATER BLASTING TOOLS	_ 1
VERTIDRIVE ROBOTS	_ 1
AQUAJET ROBOTS	_1
CENRIFUGAL PUMPS	_ 1
PIPELINE INSPECTION	_1
TANK CLEANING	_1
STREAMLINE PUMPS	_1
ENGINES	_1
INSTRUMENT FITTINGS	2

Plates

SUITABLE FOR ALL KINDS OF CODE, THE BEST QUALITY, WITH FASTEST DELIVERY

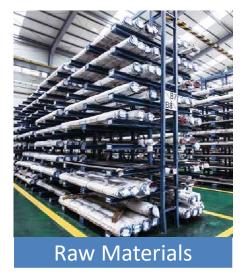
Cold Rolled Coils & Sheets

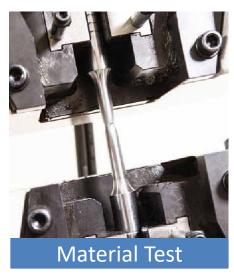
Cold-rolled products possess various surfaces according to the second surface fabrication process, and the surfaces are outstanding and the workability is superior; applications range from automobiles, refrigerators, washers to industrial apparatus and equipment, construction structures, etc.

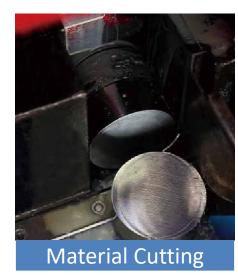
Heavy Plates

Stainless plates are relatively thick products produced through four-high reversing strip mill having a thickness of 6 mm or higher, and are used for making general welded structural products, bridges, industrial machineries, marine structures, etc.

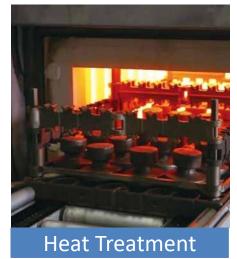
Chemical Composition

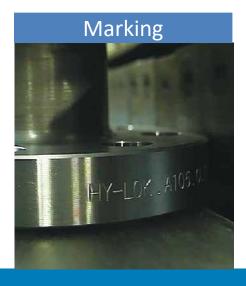

				NOMINAL CHEMICAL COMPOSITION, WT.PCT.*			CT.*	OTHER DESIGNATION SYSTEMS					
March 19			Steel Name	С	N	Cr	Ni	МО	Other	EN	DIN	ASTM	UNS No.
Page 1969 19			201	0.05	0.15	17	5	-	Mn	1.4372	-	201	S20100
1			XM−19	0.05	0.30	22	13	2	Mn,Cb,V	-	-	S20910	S20910
			301	0.10	0.04	17	7	-	_	1.4310	1.4310	301	S30100
			302	0.07	0.06	17	8	_	_	1.4319	1.4319	302	S30200
The color of the				0.06	0.05			_	S		1.4305		
					0.06			_					
Page 1997 Page								_	_				
Page 1990 Page 29 Pa								_	_				
								_	_				
								_	_				
Part								0.75	0.30-0.65Si				
									-				
Page 1989 316									0.65–1.00Si		_		
		<u>.</u> 2							-		1 4401		
		nit							_				
	п	ıste							_		11.1.00		
### Page 1	sio	Αı									1 4404		
### Page 1	rro												
### Page 1	ပိ												
### Page 1	Vet												
### Page 1	ν 2												
### Page 1	a n (
### Page 1	ce												
### Page 1	rvi												
### Page 1	$\mathbf{s}_{\mathbf{e}}$												
### Page 1	ral												
### Page 1	ene		· ·										
Color	Ğ												
LDX 2101 0.03 0.22 21.5 1.5 0.3 Mn 1.4162 - S32101 S3													
SAF 2304 0.02 0.10 23 4.8 0.3 - 1.4362 1.4362 2304 \$32205 \$33205 \$3													
SAF 2507 0.02 0.27 25 7 4 -		×									1 4362		
SAF 2507 0.02 0.27 25 7 4 -		ıple											
Hard		Ŋ							_				
Here Hand State 1.4008 1.4000 1.4000 1.4000 4108 5.41008 416 5.41600 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 430 5.41008 5.41008 430 5.41008 430 5.41008 5.41008 430 5.41008 5.41008 430 5.41008 5.41008 5.41008 430 5.41008 5.4					-			-	_				
HO					_		_	_	_				
Hand Hand Hand Hand Hand Hand Hand Hand					_		_	_					
Hard					_		_	_					
A39		ıer			_		_	_					
A39		Oth					_	1	-				
17-4					_		_		Ti				
17-7					_						1 4542		
304H 0.05 0.06 18.2 8.1 1.4948 1.4948 304H S30400 321H 0.05 0.01 17.3 9.2 - Ti 1.4878 1.4878 321H S32100 347H 0.04-0.10 - 17.0-20.0 9.0-13.0 - Charm 100mx 1.4961 1.4961 S34709 S34709 309H 0.04-0.10 - 22.0-24.0 12.0-16.0 S30909 S30909 309S 0.06 0.08 22.2 12.2 1.4833 1.4833 309S S30908 310H 0.04-0.10 - 24.0-26.0 19.0-22.0 S31009 S31009 310S 0.05 0.06 25.2 19.2 - 1.4845 1.4845 310S S31008 153 MA 0.05 0.15 18.5 9.5 - Si,Ce 1.4818 - S30415 S30415 253MA 0.09 0.17 21 11 - Si,Ce 1.4835 - S30815 S30815 353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315					_			_					
Same					0.06			_					
347H 0.04-0.10 - 17.0-20.0 9.0-13.0 - Cckmint@mex 1.4961 1.4961 S34709 S34709 309H 0.04-0.10 - 22.0-24.0 12.0-16.0 S30909 S30909 309S 0.06 0.08 22.2 12.2 1.4833 1.4833 309S S30908 310H 0.04-0.10 - 24.0-26.0 19.0-22.0 S31009 S31009 310S 0.05 0.06 25.2 19.2 1.4845 1.4845 310S S31008 153 MA 0.05 0.15 18.5 9.5 - Si,Ce 1.4818 - S30415 S30415 253MA 0.09 0.17 21 11 - Si,Ce 1.4854 - S30815 S30815 353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315								_					
309H 0.04-0.10 - 22.0-24.0 12.0-16.0 1.4833 1.4833 309S S30909 S3090								_					
Name								_	-				
353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315	ıg	ပ						_	_				
353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315	stir	iti						_	_		-		
353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315	esi	ster						_	_		1 4845		
353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315	t R	Au						_	Si Ca		-		
353MA 0.05 0.16 25 35 - Si,Ce 1.4854 - S35315 S35315	Iea							_			_		
	1							_			_		
www.suniinons.com			OSOIVIA	3.00	5.10	2.5	0.5		01,06	1,7004		555015	555515
							www.sur	niinnns d	com				


Characteristics and Use of Products


Div.	EN	ASTM	UNS	Particular features	Example applications
	1.4006	410	S41000		crushers - aeronautical engineering - distillation column plates
	1.4021	420	-	Good quenchability. Delivery	cutting tools - cutlery - mechanical parts - building tools
Martensitic	1.4028	420	S42000	possible in the quenched conditio	cutlery - cutting tools - wear components
	1.4419	-	-	peccipie in the quononed contains	cutlery - cutting tools - building tools
	1.4034	-	-		cutlery - surgical implements
	1.4116	-	-		cutlery - cutting tools - building tools
	1.4	410S	S41008	high temperature oxidation resistance up to 650 °C	maintenance parts - finned tubes - distillation column plates
	1.4512	409	S40900	good high temperature oxidation resistance	automobile exhaust systems
	1.4003	-	S41003	grade for welded structures	containers - railway vehicles - hoppers - industrial equipment
	1.4016	430	S43000	bright annealed for appearance-sensitive parts - F 18 for coin blanks	household equipment - decorative components - appliances - tableware
	1.451	430Ti	S43036	titanium improves weldability and cold formability	appliances - sinks - tubes - burners
Ferritic	1.451	439	-	complies with the AISI 439 standard	hot water tanks - sugar refinery tubing
	1.4113	434	S43400	molybdenum enhances the corrosion resistance	decorative automobile profiles
	1.4017	-	-	high mechanical strength after quenching and cold working	conveyor belts
	1.4509	-	S43932	improved mechanical strength at high temperatures	exhaust systems - catalytic converters - burners
	1.4526	436	S43600	attractive appearance after deformation, without	exhaust systems - automobile beading - cooking utensils - domestic appliances
	1.4521	444	S44400	roping resistance to pitting corrosion identical to that of 18.11 ML (316L)	hot water tanks - boilers - fume ducts - various heat exchangers
	1.431	301	S30100	cold working grade	springs - mechanical components
	1.4318	301LN	S30103	higher strength in the cold worked condition	railway vehicles, structural applications
	1.4301	304	S30400	the basic low carbon austenitic grade	tableware - cooking utensils - decoration - collective catering
Austenitic	1.4301	304	S30400	extra deep drawing grade	sinks - dishwashers - pressure cookers - champagne buckets
	1.4307	304L	S30403	very low carbon grade - good weldability	boilerwork - heat exchangers - expanded metal - nuclear engineering
	1.4541	321	S32100	titanium-stabilized - corrosion resistance in weld zones - creep strength	tubes - aeronautical engineering - boilerwork
	1.4303	305	S30500	deep drawing - non-magnetic	electronic components
	1.4401	316	S31600	molybdenum-containing austenitic grade	tubes - boilerwork - road transport tanks - hot water tanks
	1.4404	316L	S31603	very low carbon molybdenum-containing grade - good weldability	tubes - boilerwork - road transport tanks - hot water tanks (large thicknesses)
Molybdenum containing	1.4435	316L	S31603	high molybdenum very low carbon grade - improved corrosion resistance + weldability	tanks for chemicals and foodstuffs - marine engineering applications
austenitic	1.4432	316L	S31603	idem - slightly lower Ni content	
	1.4571	316Ti	S31635	titanium-stabilized grade for welding applications	chemical and oil industry applications, high temperatures
	1.4438	317L	S31703	3% Mo grade - improved corrosion resistance	off-shore structures, tanks for chemicals and foodstuffs - marine engineering
	1.4828	-	-	high temperature oxidation resistance up to $950^\circ\!$	heating equipment
Heat resisting	1.4833	309S	S30908	high temperature oxidation resistance up to 1050 $^{\circ}\!$	heating element sheaths
steels	1.4845	310S	S31008	high temperature oxidation resistance up to 1100℃	furnace equipment

Plate





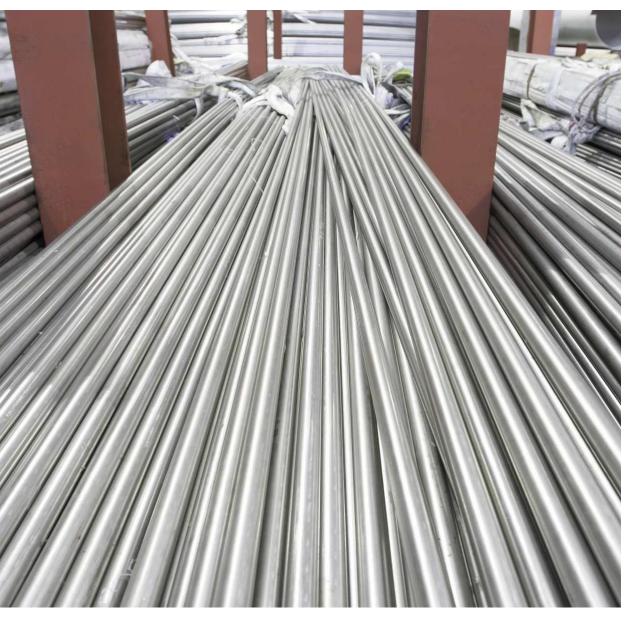
Forging For Special Metal

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

Manufactures Thousands of Products Through the Experts and Excellent Facilities.

These products have been designed based on 20+ years of experience, indepth knowledge and customer feedback.

The Sunjin P&S's diverse standard and special products are designed and produced carefully by strict production standard. Sunjin P&S is striving to manufacture reliable products for customer's satisfaction.



The Best in Metals, Worldwide.

Sunjin P&S carefully selects superior quality metals products from leading manufacturers. We also enjoy supply relationships with leading worldwide sources. Regardless of the manufacturer, Sunjin P&S manages supplier qualification, order placement and delivery schedules. In addition, we coordinate with manufacturers to ensure on-time delivery.

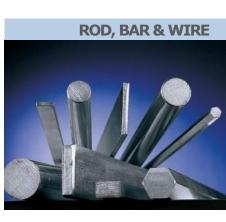
Pipe & Tubing

PROVEN EXPERIENCE. CERTIFIED QUALITY. DEPENDABLE SERVICE.

MATERIALS	GRADES/ALLOYS	SIZE RANGES
Aluminum Alloys	5083, 5086, 6061, 6063, Construction Grades, Handrail, Drawn, Extruded, Port Hole Die, Seamless, Structural	Pipe Sizes - 1/8"NPS to 12"NPS Schedules from: 10 to 80
Stainless Steel	304, 304L, 316, 316L, 2205, 321, 347, 446, Seamless, Welded, As Welded, Brewery Quality	PipeSizes - 1/8"NPS to 30" NPS Schedules from 5 to XXH
Nickel & High Perf ormance Alloys	200, 400, 600, 601, 625, 800, 800H, 800HT, C276, Alloy 20, Seamless, Welded	PipeSizes - 1/8"NPS to8"NPS Schedules from 10 toXXH
Carbon & Alloy Steel	Black, Line, Seamless, Structural, ERW	PipeSizes - 1/8"NPS to 12"NPS Schedules from: 10 to 80

MATERIALS	GRADES/ALLOYS	SIZE RANGES
Aluminum Alloys	2024, 3003, 5052, 6061, 6063, 7075, Aircraft, Commercial, Construction, Structural, Mechanical, Drawn, Extruded, Omamental, Rounds, Rectangles, Squares	Outside Diameters - 1/8''to16'' Wall Thickness' from ,020'' to 2,000''
Stainless Steel	303, 304, 304L, 316, 316L, 321, 347, 17-4, 15-5, Aircraft, Commercial, Heat Exchanger, Hollow Bar, Hypodermic, Instrumentation, Mechanical, Sanitary, S eamless, Weldedand Drawn, As Welded, Ornamental, Round, Rectangular, Sq uare (Mill and Polished Finish)	Outside Diameters031" to 12" Wall Thickness' from .004" to 2,000"
Nickel & High Per formance Alloys	200, 400, 600, 601, 625, 800, 800H, 825, C276, 21-6-9, Alloy 20, Aircraft, Commercial, Seamless, Welded	Outside Diameters031" to 7" Wall Thickness' from .007" to 1-1/2"
Titanium	CP, 3AL-2.5V, 15-3-3-3, CR2, 6AL-4V, Ducting	Outside Diameters- 1/4"to8" Wall Thickness' from .016" to .260"
Carbon & Alloy Steel	LowCarbon, 1020, 1026, 4130, 4135, 4140, 4340, 8620, 52100, Aircraft, Mechanical, Hydraulic, ERW,DOM, Seamless, Welded, As Welded, Round, R ectangular, Square, Streamline, Structural Shapes	Outside Diameters125" to 12" Wall Thickness' from .020" to 3.000"




The Best in Metals, Worldwide.

Sunjin P&S carefully selects superior quality metals products from leading manufacturers. We also enjoy supply relationships with leading worldwide sources. Regardless of the manufacturer, Sunjin P&S manages supplier qualification, order placement and delivery schedules. In addition, we coordinate with manufacturers to ensure on-time delivery.

Bar & Extrusions

PROVEN EXPERIENCE. CERTIFIED QUALITY. DEPENDABLE SERVICE.

MATERIALS	GRADES/ALLOYS	SIZE RANGES
Aluminum Alloys	1100, 2011, 2024, 2219, 6061, 6063, 6101, 7075	Rounds - 1/8" to 16" Hex - 1/4" to 2-3/4" Squares - 1/4" to 6" Flats - 1/8" to 5"
Stainless Steel	303, 304, 304L, 309S, 316, 316L, 321, 347, 410, 416, 17-4, 15-5, 13-8, Equal & Unequal Angles	Rounds- 1/8"to16" Hex- 1/4"to2-1/2" Squares- 1/4"to3" Flats- 1/8"to3" Edge Conditioned
Nickel & High Per formance Alloys	200, 330, 400, 600, 601, 625, 718, X750, 800, 800H, 800AT, 825, C 276, HX, K500, Alloy20	Rounds- 3/16"to11" Edge Conditioned
Titanium	6AL-4V	Rounds- 3/8''to6-1/4''
Carbon & Alloy Steel	300M, 4130, 4140, 4150, 4340, 6150, 8620, 8740, 9310, 52100	Rounds- 1/8"to12" Hex- 1/4"to1-1/8"

MATERIALS	GRADES/ALLOYS	SIZE RANGES
Aluminum Extrusions	1100, 2014, 2024, 2224, 5052, 5083, 5086, 6061, 6063, 7050, 7075, 7150, 7178	Aircraft Extrusions by Mfg Part Numbers, Angles, Architectural, A.N.D., H-Beams, I-Beams, Channels, Structural, Shapes, Wide Flange, Zee

Fittings

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

STAINLESS STEEL

EN 10253-4 TYPE A and TYPE B **ASME B16.9**

Ė	Ibows
	2D, 3D, 5D

Reducers

Caps

concentric

- eccentric
- equal reduced

Tees

Range of Sizes

· Short Radius,

• 45°, 90°, 180°

Long Radius

- 10.0 mm 323.9 mm
- 1/2" 12"

Range of Wall Thickness

in accordance with

- EN 10253 part 4 (Series 1 6)
- ASME B36.19 (SCH 10S XXS)

material grades **EN and DiN**

- 1.4306
- 1.4307
- 1.4541
- 1.4550
- 1.4539 • 1.4571
- 1.4404
- 1.4439 • 1.4462
- 1.4828
- 1.4841
- 1.4878

ASME

- WP304/304L
- WP316/316L
- WP321/321H
- WP347/347H WP304H
- UNS S31803
- UNS S32750
- WP310S

Machining Center

Sunjin P&S machines buttwelding fittings and produces custom fittings (made of round bar) according to the applicable standards (EN, DIN, ASME), and of course also according to any special requirements -quickly and to an exceptionally high standard of quality.

Elbows and Fittings According to Customer Requirments

We can machine elbows and fittings at short notice in our machining centre directly in accordance with customer requirements:

- Pre-processing and taper boring of elbows and fittings with an outer diameter of up to 610.0 mm
- Cutting of elbows in any required degree value
- End machining in accordance with standard
- · Machining according to drawing or customer specifications

Special Fittings Made of Solid Materials

The required product is not available from stock? Pro ducts can be quickly fabricated - even for unusual re quests - thanks to our extensive buffer stock of steel b ars, blanks, and seamlesspipes.

Our fabrication and pre-processing activities currently encompass the following areas:

- Reducers (concentric and eccentric)
- Tees
- Caps Crosses
- Lateral tees
- · Customised turned parts made as per customer drawings up to 480 mm diameter
- · Threaded fittings

WELDING NECK FLANGE

LAP JOINT FLANGE

BLIND FLANGE

THREAD (SCREWED) FLANGE

SOCKET WELDING FLANGE

SLIP-ON FLANGE

Oil, Gas & Chemicals

- Upstream (Onshore & Offshore)
- Midstream
- Downstream

Power

- Conventional
- Nuclear
- Renewable

Mining

- Extractions
- **Transformation**

Infrastructure

- **Transportation**
- Large Industrial

Flanges

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

MATERIALS

Carbon Steels

ASTM

- AS105(N)
- A181Gr
- A266Gr
- A350Gr

JIS

• SFGr

High Yield Carbon Steels

ASTM A694Gr

- F42
- F45
- F52 • F55
- F60
- F65

Stainless Steels

ASTM A182Gr

- F304(L,H)
- F316(L,H)
- F347(H)
- F317(L) • F44

Duplex & Super Duplex Steels

ASTM A182Gr

- F51
- F53

Low Alloy Steels

ASTM A182Gr

- F1
- F5(A) • F6
- F9
- F11
- F12 • F22

UNS 6625

Nickel Alloy

B564

- UNS 8825

The Best in Metals, Worldwide.

Sunjin P&S carefully selects superior quality metals products from leading manufacturers. We also enjoy supply relationships with leading worldwide sources. Regardless of the manufacturer, Sunjin P&S manages supplier qualification, order placement and delivery schedules. In addition, we coordinate with manufacturers to ensure on-time delivery.

Fasteners

PROVEN EXPERIENCE.

CERTIFIED QUALITY.

DEPENDABLE SERVICE.

STUD BOLT & NUT

B7, B7M, L7, L7M B8, B8M, B8M CL, 2 A453-660 INCONEL 625, 718 UNS S32750 / S32760 MONEL K-400 / K-500

Grade 2 / 5 / 7

C65100, C63000, C61400

STUD BOLT

B16, B4B INCONEL 718, INCONEL X-750 A453-660, A193-B7, A193-B8M

HEAVY HEX BOLT(HEXAGON BOLT)/HEX NUT

B7, B7M, B16, B5, L7, L7M, L43, 20CrMoVTIB4-10 A36, A307, 4.6, SS400, S45C, A325, A490 B8 CL1&2, B8M CL1&2, B8T, B8C, B6, SS317(L) A453-660, INCONEL 625, 718, INCONEL 925, C276 UNS S32760 / S32750

B7, B16, A325, A440 INCONEL 718 A453-660

U-BOLT/HEX NUT/ISOLATION PAD

B7,B7M,B16,B5,L7,L7M,L43,20CrMoVTIB4-10 A36,A307,4.6,SS400,S45C,A325,A490 B8 CL1&2, B8M CL1&2,B8T,B8C,B6,SS317(L) A453-660, INCONEL 625, 718, Incoloy 925,C276 UNS S32760 / S32750 Grade 2 / 5 / 7 C65100, C63000, C61400

www.sunjinpns.com

DESCRIPTION				RA	NGE
	DESCRIPTION	MATERIAL	DIMENSION	Inch	Metric
	STUD BOLT	A193,A320,A437,A449,A453,ISO 898-1	A193,A307,A540,A564	1/4"~6"	M6~M160
	HEX BOLT	A193,A320,A437,A449,A453,ISO 898-1	ASME B18.2.1 / ANSI B18.2.3.5M	1/4"~6"	M5~M160
	HEAVY HEX BOLT	A193,A320,A437,A449,A453,ISO 898-1	ASME B18.2.1 / ANSI B18.2.3.6M	3/8"~3"	M10~M48
	SQUARE HEAD BOLT	A193,A307,S45C,S20C,SS400	ASME B18.2.1	1/4" ~ 1-1/2"	
	FITTED BOLT	JIS G 4053(SCM435,SCM440,S45C)	CUSTOMER SPECIFICATION		M24~M60
	HEX SOCKET BOLT	A193,A320,A437,A449,A453,ISO 898-1	ASME B18.3/ANSI B18.3.1M	NO.0~4"	M6~M48
	U-BOLT	A193,A325A,SS400	JIS F3022	3/8"~32"	M12~M30
В О	ANCHOR BOLT	A36,A307,A540,SF440,S45C,20C,SS400	JIS B1178	1/2"~5"	M12~M125
L T	T-HEAD BOLT	A36,SF440,S45C,S20C,SS400	DIN7992	1/2"~4"	
	EYE BOLT	A489,S45C,S20C,SS400	ANSI B18.15	1/4" ~ 2-1/2"	M6~M120
	FLANGE BOLT	A193,A320,A437,A449,A453,ISO 898-1	ASME B18.2.1/IFI536	1/4"~3/4"	M6~M30
	TENSION BOLT	JIS G 4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M10~M30
	HOLD'G DOWN BOLT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M24~M30
	END CHOCK BOLT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M40~M80
	COUPLING BOLT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M50~M180
	PISTON CROWN BOLT	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M12~M30
	CYLINDER COVER STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M48~M120
	MAIN BEARING STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M48~M120
	CONNECTING ROD STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M48~M120
s	FUEL VALVE STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M20~M48
T U	AXIAL VIBR DAMPER STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M20~M48
D	STARTING AIR VALVE STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M20~M48
	REDUCED SHANK STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M20~M48
	PISTON ROD STUD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M12~M30
	TIE-ROD	JIS G4053(SCM435,SCM440,SNCM439)	CUSTOMER SPECIFICATION		M24~M80
	HEX NUT	A194,A453,A563,ISO 898-2	ASME B18.2.2/ANSI B18.2.4.1M	1/4"~4"	M10~M160
	HEAVY HEX NUT	A194,A453,A563,ISO 898-2	ASME B18.2.2/ANSI B18.2.4.6M	1/4"~6"	M10~M160
N	HEX JAM NUT	A194,A453,A563,ISO 898-2	ASME B18.2.2/ANSI B18.2.4.1M	1/4"~4"	M10~M36
U	FITTED NUT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M20~M120
Т	COUPLING NUT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M50~M180
	ROUND NUT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M30~M120
	HYDRAULIC NUT	JIS G4053(SCM435,SCM440)	CUSTOMER SPECIFICATION		M30~M120
	PLUG	A105,A182,A350,S45C	ANI B16.11	1/8"~4"	
Etc	WASHER	A510,A580ASWRH,F436,S45C	ASME B18.21.1/IFI532/JIS B1251	1/2"~3"	

Design of competitive solutions
Strong product expertise
Ability to interface with all customers around all the globes
Structured QA/QC process to assess & control

We offer a full range of specialized services and solutions to optimize time, quality and costs.

Dedicated sourcing and technical experts defining & implementing the most effective sourcing strategy.

Complete set of value adding services to ensure on- quality and on-time delivery.

We are serving most major International EPC contractors and Shipyards.

Electrical Material & Equipment

ONE STOP SHOP FOR LV/MV ELECTRICAL MATERIAL

Cable & Wires

- MV Power Cables
- LV Power Cables
- Control & Instrumentation Cab
- Bus Ducts
- LAN Cables
- EHT Power Cables
- Shipwiring

Cabling MGT

- Glands
- Ties
- Markers
- Connectors & Terminations
- Grounding
- Cable Cleats

Primary Power Protection & Distribution

- MV transformers
- LV transformers
- MV switchgears
- LV switchgears
- Substations motor control centers
- E-houses

Cable Trays

- Cable trays
- GRP cable trays
- Ladderrack
- Cable basket tray
- Cable strut systems

Lighting & Accessories

- Fixtures
- Poles
- Mounting accessories
- Lighting control
- Ex-Proof fixtures
- Energy efficiency lighting systems

Power Management

- MCBs Panel board
- RCCBs Panel board
- Industrial control devices
- Ex-Proof junction boxes
- Ex-Proof panel boards

Conduits & Fittings

- Electrical metallic tubing
- Rigid steel conduit
- PVC coated conduit
- PVC conduit
- Ex-Proof conduit fittings

Motors & Drives

- Alternators / Generators
- Electric Motors
- Speed reducers
- Electric starters and speed changers
- High performance motors
- VFI

Low Voltage Power Distribution

- UPS Systems
- Charger & rectifier
- Inverters
- Capacity banks
- Neutral grounding resistors

Certifications and Conformity Marks

WATERJET EQUIPMENT

Your High Pressure and Centrifugal Pump Partners

Sunjin P&S Co., Ltd. is the largest supplier of high and ultra high pressure water pumps, hydroblasting equipment and centrifugal pumps, in the Middle East and South East Asia.

Headquartered in Ulsan, Korea and supported by a agent in Singapore, covering all of Asia.

Since our early days in 2000, Sunjin P&S Co. Ltd. has established a reputation for quality and excellence that few can rival. Being pump-proficient is the foundation of our business.

Driven by a commitment to source new and innovative products, our insight and knowledge is demonstrated through our responsibility to provide our clients with the very best tools for their job and innovate products which offer commercial and competitive benefits, keeping YOU, one step ahead.

Sunjin P&S Co. Ltd. 's Ulsan-based head office also houses the central assembly facility, with highly skilled technicians ready to package and build Waterblast Units and pumpsets with tools, equipment and accessories as required by the client.

High Pressure Water Blast Tools

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

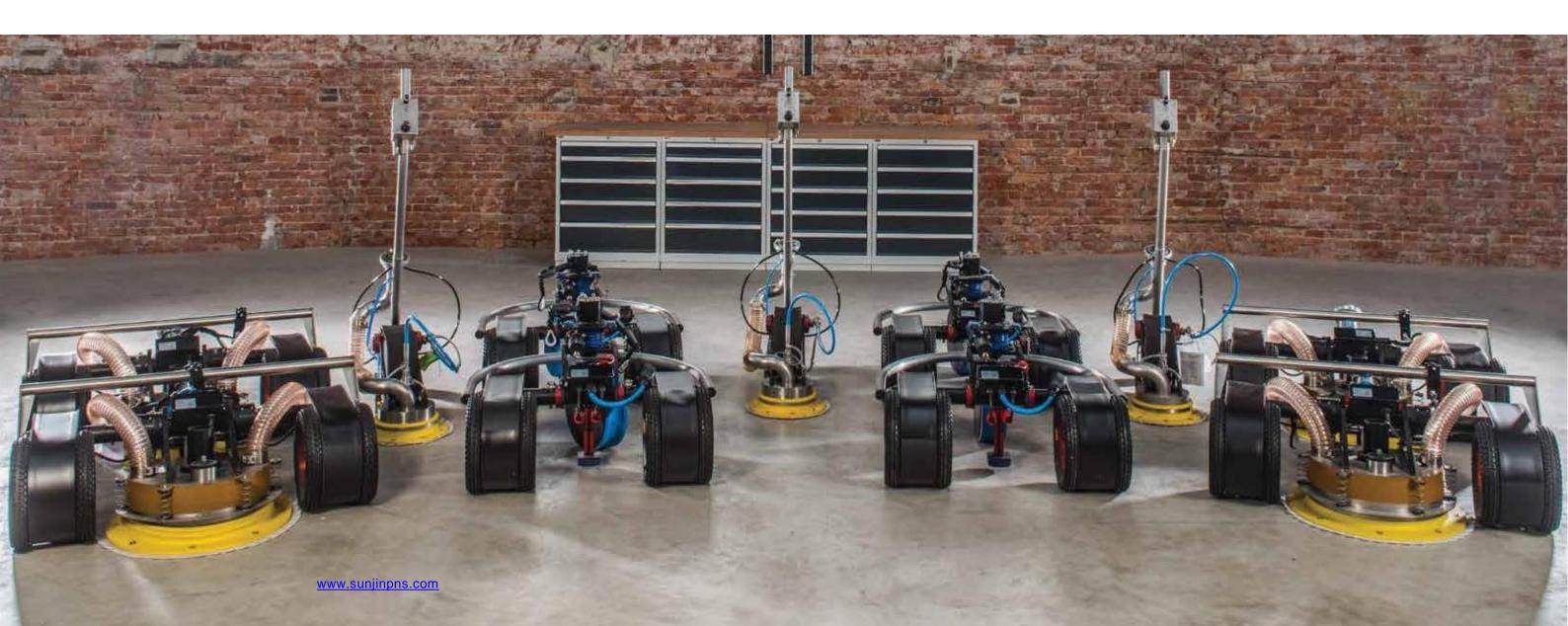
Sunjin P&S Co., Ltd. is handling of StoneAge Tools Inc. are global leaders in the design and manufacture of high pressure waterblast tools and automated equipment.

Their products have been in use by contractors and operators for three decades, and have been refined and enhanced year on year. With a product range spanning pipe cleaning nozzles through to automated hweat exchanger cleaning equipment StoneAge tools have been become an intrinsic part of any waterjetting company's arsenal.

StoneAge are based in Durango, Colorado USA, they work out of a state of the art engineering and manufa cturing facility with cutting edge in-house testing terminals allowing the dedicated engineering team to continue to push the boundaries of design.

By partnering with industrial cleaning contractors, StoneAge engineers have been able to gain a unique insight that guides the design of automated systems that increase safety and advance productivity for a wide variety of waterblasting applications.

Vertidrive Customized robots


Sunjin P&S Co., Ltd. is handling of Vertidrive

The M3 and M4 Robots are designed to carry out open hydroblasting and offer significant advantages over the traditional methods to remove marine growth, industrial coatings and corrosion.

Featuring a magnetic drive assembly and light-weight construction, VertiDrive's range of robotic equipment has been designed to adhere to vertical, horizontal, and overhead steel surfaces.

The Robot is carried by a specially designed trolley, with a safety winch system that hosts a fall arrester for easy positioning. The robot (54kg) can then be lifted and mounted to any steel surface.

Once positioned correctly, the robot can be controlled remotely by the operator, and surface preparation can begin. The reciprocating boom comes with a electric driven rotor head providing a 20cm wide cleaning pattern and a 140cm stroke.

Aquajet Hydrodemolition Robots

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

Sunjin P&S Co., Ltd. is handling of Aquajet Hydrodemolition Equipment for removing deteriorated and damaged concrete

Aquajet Systems is the leading force in Hydrodemolition technology across the globe. Their Aqua Cutters are the most advanced on the market with an extensive range of features to boot.

The entire range of equipment from Aquajet have been designed specifically for the purpose intended, and have repeatedly exceeded our customers high expectations on efficiency, function, productivity and reliability.

Hydrodemolition is the Sustainable way to protect and preserve concrete constructions. They key to Hydrodemolition is to pressurise and widen the microcracks in the weakened concrete using high-pressure water penetration. Material is removed as the build-up of pressure exceeds the tensile strength of the concrete.

Unlike conventional methods such as jackhammers, Hydrodemolition is impact-free, avoiding vibrationsthat loosen rebar and cause micro fractures, protecting the integrity of the substrate.

Hydrodemolition is applicable to all concrete surfaces in need of refurbishing, repair or cleaning, and can be used underwater.

LCC analysis shows that the repair life expectancy of 21 to 35 years compared to mechanical chiselling of 7-12 years.

Centrifugal Pumps

Sunjin P&S's engineer and package high performance centrifugal pumps for use in Oil &Gas, Industrial, Pipeline Pre-Commissioning and Flushing, Agriculture, Mining, Municipal, and general applications

"Sunjin P&S's reputation for quality and efficiency, and the company's success in the Hydrojet industry, makes them ideal partners for increasing our reach and ensuring our pumps are being packaged to their best advantage."

- Paul Skippins, Commercial Director, Pioneer

1.5 to 30inch flange sizes. Flows upto 10,000 m3/hr Heads upto 210 meters. Impellers available for clear liquid or solid handing applications Maximum solids handling 5.9 inches.

Mechanical seal lube oil reservoir allows pump torun dry indefinitely

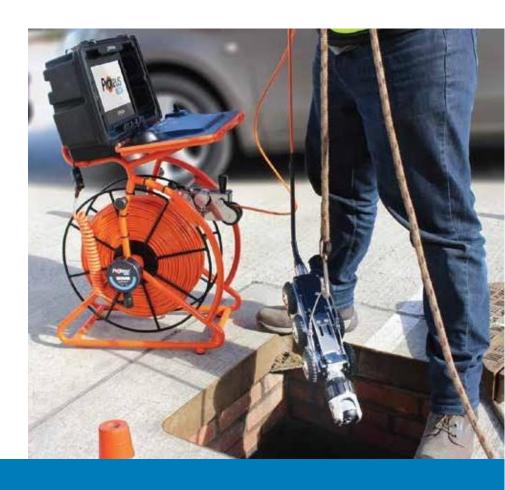
Pioneer's Posivalve stainless steel priming valve is specifically designed to eliminate product carryover.

Heavy Duty Design with various material options available:• Ductile Iron •CD4MCu Duplex stainless steel •316 Stainless steel - Reduced maintenance costs

AVAILABLE INSKID MOUNTED/ LIFTING FRAME/ CONTAINER/ WHEEL-MOUNTED OPTIONS.

Automatically Dry Self-Primings. No priming water required. High efficiency impeller means lower fuel costs. Applications include dewatering, Pipeline flooding, Chemical flushing, Sewage over pumping, Sea water lift product transfer

Using a selection of the market leading brands, we custom engineer and package split-case, end suction and multi-stage pumps, vacuum assisted automatic selfpriming and automatic wet self-priming pumps.


We understand the heavy-duty demands of our clients applications, and in this region, pumps will invariably operate in hostile environments. For this reason, we source performance pumps and custom package using robust ductile iron with over sized bearings and shafts giving you unparalleled reliability.

All of our pumpsets are fully engineered to your specifications, pumps can be skid or trailer mounted, or can come complete with a lifting frame or canopy enclosure.

As required, our Technical Engineers can ensure each unit's compliance with hazardous zones and ATEX r egulations. With unrivalled regional teams of service technicians and support staff, Asia Waterjet provide an after sales service that you can have confidence in.

Pipeline Inspection Systems

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

MiniCam specialise in the manufacture and distribution of Pipeline In spection Systems. Their products have been designed based on 20+ years of experience, indepth knowledge and customer feedback.

The full range of products from MiniCam meet and exceed most pipeline inspection requirements and with advanced reporting software, detailed footage can be recorded and all findings can be documented.

The products are suitable for use in multiple environments including waterproofing units up to pressure ratings up to 1Bar / 14 Psi as well as hazardous areas with ATEX Zone 2 certification options available. When combined with a wide variety of accessories available the minicam range becomes a very versatile inspection option, all owing you the customer utilize your investment over a broad spectrum of applications.

Tank cleaning Mini-Robots

No Man Entry Radio-Controlled Tank Cleaning Mini-Robots

In a continued effort to minimize the entry of man in Confined Spaces during cleaning activities, Ge rottoFederico Srlhas developed a new generation of remote radio-controlled mini-robots to move, for instance, in underground tanks, to disrupt the compact materials with the use of a front mill, to extract the sediments by suction.

The robot, connected to the Suction Excavator through the suction pipe D.250, is totally remote-controlled from outside by a single operator so that no man should enter confined spaces during the emptying of tanks and r eservoirs with risk of the presence of pollutants.

Gerotto'smini robots can be used in combination with drains and other types of industrial vacuum cleaners as well as Suction Excavator.

Streamline Pumps

Discflo's pumps have been solving problems in the Oil &Gas +Petrochemical, offshore and onshore service, subsea operations, tank transfer, environment al clean-up operations, crude oil processing and pumping oil/water emulsions industry for over 36 years. The powerful combination of superior abrasion resistance, gas entrained pumping ability, and non-emulsifying laminar flow make the disc pump the ideal choice for some of the toughest applications.



Discflo's pumps have been solving problems in the Oil & Gas +Petrochemical, offshore and onshore service, subsea operations, tank transfer, environmental clean-up operations, crude oil processing and pumping oil /water emulsions industry for over 36 years. The powerful combination of superior abrasion resistance, gas entrained pumping ability, and non-emulsifying laminar flow make the disc pump the ideal choice for some of the toughest applications.

The Disc pump uses a new and patented technology that isn't available in any other pump. The technology of the Disc pump harnesses the natural power of the boundary layer and viscous drag.

Through viscous drag, the fluid is pulled through the pump without impingement. The boundary layer attracts and drags successive layers of fluid molecules into layered flows of parallel streams. This is the simple principle of viscous drag and in the Disc pump it is a powerful dynamic force that "pulls" the fluid through the pump in a smooth laminar, non-turbulent flow.

Power Generation Engines (G Drive / GPac)

3 3 (3 3 3 4)										
	Туре		Displace- Bore x		Output (ISO 3046/8528)				Dimension	Dry
Model	No.ofCyL	Accinting	ment	Stroke	kWm(ps), 50Hz		kWm(ps), 60Hz		(LxWxH)	Weight
	Nucley	Aspiration	(Liter)	(mm)	Prime	Standby	Prime	Standby	(mm)	
DP066TA	16	TC	58	102×118	77(104)	85(115)	108(147)	120(163)	1144×705×836	450
DP066LA	L6	П	58	111×139	104(141)	115(156)	122(165)	135(183)	1144×705×836	475
DP086TA	16	TC	81	111×139	137(186)	152(207)	168(228)	187(254)	1242×746×1113	790
P086TI	16	П	81	111×139	177(240)	199(270)	205(279)	223(303)	1242×923×1095	790
DP086LA	16	П	81	111×139	201(273)	224(305)	228(310)	253(344)	1242×1122×1113	790
P126TI	L6	П	111	123×155	241(328)	272(370)	278(378)	298(405)	1384×1109×1195	910
P126TI-II	L6	П	111	123×155	265(360)	294(400)	307(418)	342(465)	1384×1109×1195	915
P158FE	V8	П	146	128×142	402(546)	441(600)	441(600)	492(669)	1492×1389×1240	997
P158LE-1	V8	П	146	128×142	327(444)	362(492)	366(498)	402(546)	1389×1389×1216	950
P158LE	V8	П	146	128×142	363(494)	414(563)	402(547)	458(623)	1389×1389×1216	950
DP158LC	V8	П	146	128×142	408(555)	449(610)	466(634)	513(697)	1274×1138×1207	1155
DP158LD	V8	П	146	128×142	464(630)	510(693)	505(687)	556(756)	1274×1138×1207	1155
P180FE	V10	П	183	128×142	452(615)	496(675)	515(700)	566(770)	1539×1389×1250	1188
DP180LA	V10	П	183	128×142	502(683)	552(750)	559(760)	615(836)	1592×1389×1223	1250
DP180LB	V10	П	183	128×142	556(756)	612(832)	601(817)	661(899)	1592×1389×1223	1250
P222FE	V12	П	219	128×142	569(774)	612(832)	659(896)	711(967)	1719×1389×1305	1650
DP222LA	V12	П	219	128×142	60H	z Only	670(911)	737(1002)	1738×1389×1258	1420
DP222LB	V12	П	219	128×142	604(821)	664(903)	711(967)	782(1063)	1738×1389×1258	1420
DP222LC	V12	П	219	128×142	657(894)	723(983)	753(1023)	828(1126)	1738×1389×1258	1420

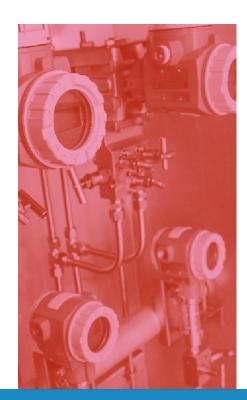
Engines For All Industrial Fields

INTELLLIGENT, FLEXIBLE, RUGGED WITH TOTAL INSPECTION PRODUCTIVITY

Introduction of Engine Business Group

Doosan Infracore Engine Business Group started building Korea's first diesel engines in 1958 and has expanded it s business ever since. Today, the Engine Business Group supplies global customers with diesel and compressed natural gas (CNG) engines for buses and trucks, industrial equipment, power generation and marine.

The research and development team has been devoted to developing eco-friendly engines to meet stringent emission standards, and developed Euro 5 compliant diesel engines and Euro 6 CNG engines for commercial vehicles and as well as the CNG engines for power generation. The Business Group completed development of sophisticated compact diesel engines that satisfy tougher


U.S. Tier 4 Final and EU Stage IIIB & IV standards, these new models started production in 2012. The Engine Business Group operates facilities for engine assembly, materials production, and parts machining. The product portfolio includes wide range of power output diesel and CNG engines to satisfy various demands of customers all over the world. Doosan Infracore will keep striving to satisfy alleviating standards of customers and provide a value to lives of people and our environments.

Valves, Fittings & Packaging System

FITTINGS

Hy-Lok Fittings have been designed with great care to meet the specifications required for a wide range of applications in a various industries and satisfied production standards.

Hy-Lok Fittings have been used in Most of the industrial field s and supplied to well-known end users in the world on the basis of the best quality and reliable and wide technology.

VALVES

Hy-Lok Instrument Valves, Manifolds and Manual Ball Valves have been highly recognized by customers through the safety, reliability and corrosiveness to meet the severe installation condition such as offhsore and power plant.

PACKAGING SYSTEM

Hy-Lok has designed and manufactured customized Package Soluti on such as Air Manifolds, Air Pipe Module for Train Brake System an d Instrument Panel operated in power plant.

Hy-Lok has prepared in any circumstances with concerted efforts t hrough the accumulated technology & know-how for 40 years.

Centrifugal Pumps

Sunjin P&S's engineer and package high performance centrifugal pumps for use in Oil &Gas, Industrial, Pipeline Pre-Commissioning and Flushing, Agriculture, Mining, Municipal, and general applications

"Sunjin P&S's reputation for quality and efficiency, and the company's success in the Hydrojet industry, makes them ideal partners for increasing our reach and ensuring our pumps are being packaged to their best advantage."

- Paul Skippins, Commercial Director, Pioneer

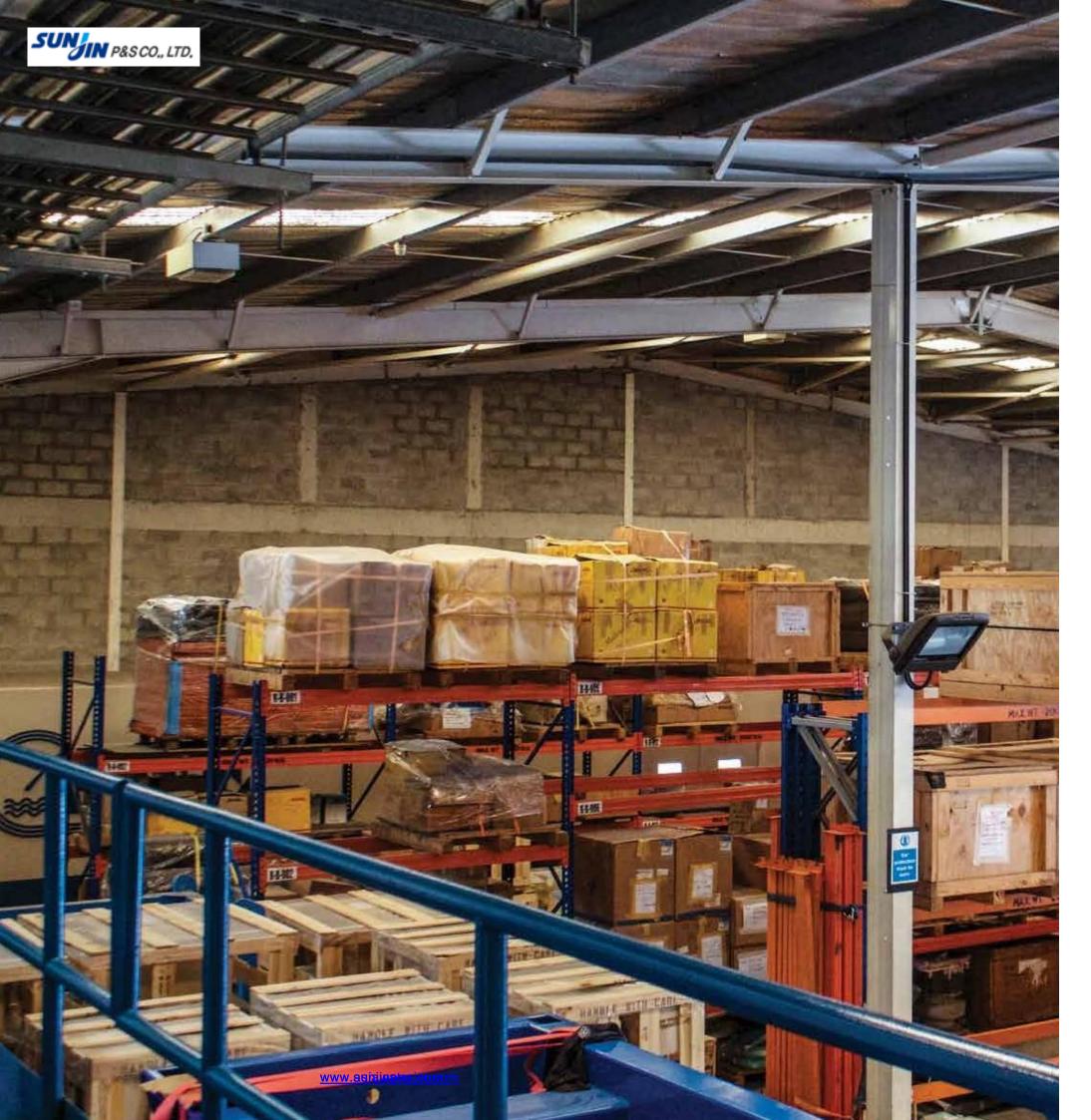
1.5 to 30inch flange sizes. Flows upto 10,000 m3/hr Heads upto 210 meters. Impellers available for clear liquid or solid handing applications Maximum solids handling 5.9 inches.

Mechanical seal lube oil reservoir allows pump torun dry indefinitely

Pioneer's Posivalve stainless steel priming valve is specifically designed to eliminate product carryover.

Heavy Duty Design with various material options available:• Ductile Iron •CD4MCu Duplex stainless steel •316 Stainless steel - Reduced maintenance costs

AVAILABLE INSKID MOUNTED/ LIFTING FRAME/ CONTAINER/ WHEEL-MOUNTED OPTIONS.


Automatically Dry Self-Primings. No priming water required. High efficiency impeller means lower fuel costs. Applications include dewatering, Pipeline flooding, Chemical flushing, Sewage over pumping, Sea water lift product transfer

Using a selection of the market leading brands, we custom engineer and package split-case, end suction and multi-stage pumps, vacuum assisted automatic selfpriming and automatic wet self-priming pumps.

We understand the heavy-duty demands of our clients applications, and in this region, pumps will invariably operate in hostile environments. For this reason, we source performance pumps and custom package using robust ductile iron with over sized bearings and shafts giving you unparalleled reliability.

All of our pumpsets are fully engineered to your specifications, pumps can be skid or trailer mounted, or can come complete with a lifting frame or canopy enclosure.

As required, our Technical Engineers can ensure each unit's compliance with hazardous zones and ATEX r egulations. With unrivalled regional teams of service technicians and support staff, Asia Waterjet provide an after sales service that you can have confidence in.

Contact US

Ulsan, Korea

Head Office:

3F. Ulsan Free Trade Zone Office,162, Cheoyongsaneop 3-gil, Cheongnyang-myeon, Ulju-gun Ulsan, 44988, Republic of Korea

Phone: +82 70 7701 8788 Fax: +82 52 260 1500 Email: hklee@sunjinpns.com

Person In Charge

Mr. Nicky Kwon

Email: nicky@sunjinpns.com
Cell. Phone: +82 10 2998 1476